Description:The problem as to whether or not there exists a lifting of the M't/. 1 space ) corresponding to the real line and Lebesgue measure on it was first raised by A. Haar. It was solved in a paper published in 1931 [102] by 1. von Neumann, who established the existence of a lifting in this case. In subsequent papers J. von Neumann and M. H. Stone [105], and later on 1. Dieudonne [22], discussed various algebraic aspects and generalizations of the problem. Attemps to solve the problem as to whether or not there exists a lifting for an arbitrary M't/. space were unsuccessful for a long time, although the problem had significant connections with other branches of mathematics. Finally, in a paper published in 1958 [88], D. Maharam established, by a delicate argument, that a lifting of M't/. always exists (for an arbi trary space of a-finite mass). D. Maharam proved first the existence of a lifting of the M't/. space corresponding to a product X = TI {ai,b,} ieI and a product measure J.1= Q9 J.1i' with J.1i{a;}=J.1i{b,}=! for all iE/. ,eI Then, she reduced the general case to this one, via an isomorphism theorem concerning homogeneous measure algebras [87], [88]. A different and more direct proof of the existence of a lifting was subsequently given by the authors in [65]' A variant of this proof is presented in chapter 4.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Topics in the Theory of Lifting (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge). To get started finding Topics in the Theory of Lifting (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge), you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
—
Format
PDF, EPUB & Kindle Edition
Publisher
—
Release
—
ISBN
3642885098
Topics in the Theory of Lifting (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge)
Description: The problem as to whether or not there exists a lifting of the M't/. 1 space ) corresponding to the real line and Lebesgue measure on it was first raised by A. Haar. It was solved in a paper published in 1931 [102] by 1. von Neumann, who established the existence of a lifting in this case. In subsequent papers J. von Neumann and M. H. Stone [105], and later on 1. Dieudonne [22], discussed various algebraic aspects and generalizations of the problem. Attemps to solve the problem as to whether or not there exists a lifting for an arbitrary M't/. space were unsuccessful for a long time, although the problem had significant connections with other branches of mathematics. Finally, in a paper published in 1958 [88], D. Maharam established, by a delicate argument, that a lifting of M't/. always exists (for an arbi trary space of a-finite mass). D. Maharam proved first the existence of a lifting of the M't/. space corresponding to a product X = TI {ai,b,} ieI and a product measure J.1= Q9 J.1i' with J.1i{a;}=J.1i{b,}=! for all iE/. ,eI Then, she reduced the general case to this one, via an isomorphism theorem concerning homogeneous measure algebras [87], [88]. A different and more direct proof of the existence of a lifting was subsequently given by the authors in [65]' A variant of this proof is presented in chapter 4.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Topics in the Theory of Lifting (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge). To get started finding Topics in the Theory of Lifting (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge), you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products represented.