Description:This book provides a gentle introduction to the study of arithmetic subgroups of semisimple Lie groups. This means that the goal is to understand the group SL(n,Z) and certain of its subgroups. Among the major results discussed in the later chapters are the Mostow Rigidity Theorem, the Margulis Superrigidity Theorem, Ratner's Theorems, and the classification of arithmetic subgroups of classical groups. As background for the proofs of these theorems, the book provides primers on lattice subgroups, arithmetic groups, real rank and Q-rank, ergodic theory, unitary representations, amenability, Kazhdan's property (T), and quasi-isometries. Numerous exercises enhance the book's usefulness both as a textbook for a second-year graduate course and for self-study. In addition, notes at the end of each chapter have suggestions for further reading. (Proofs in this book often consider only an illuminating special case.) Readers are expected to have some acquaintance with Lie groups, but appendices briefly review the prerequisite background. A PDF file of the book is available on the internet. This inexpensive printed edition is for readers who prefer a hardcopy.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Introduction to Arithmetic Groups (University Lecture) (University Lecture Series) (University Lecture Series, 73). To get started finding Introduction to Arithmetic Groups (University Lecture) (University Lecture Series) (University Lecture Series, 73), you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
—
Format
PDF, EPUB & Kindle Edition
Publisher
—
Release
—
ISBN
1470452316
Introduction to Arithmetic Groups (University Lecture) (University Lecture Series) (University Lecture Series, 73)
Description: This book provides a gentle introduction to the study of arithmetic subgroups of semisimple Lie groups. This means that the goal is to understand the group SL(n,Z) and certain of its subgroups. Among the major results discussed in the later chapters are the Mostow Rigidity Theorem, the Margulis Superrigidity Theorem, Ratner's Theorems, and the classification of arithmetic subgroups of classical groups. As background for the proofs of these theorems, the book provides primers on lattice subgroups, arithmetic groups, real rank and Q-rank, ergodic theory, unitary representations, amenability, Kazhdan's property (T), and quasi-isometries. Numerous exercises enhance the book's usefulness both as a textbook for a second-year graduate course and for self-study. In addition, notes at the end of each chapter have suggestions for further reading. (Proofs in this book often consider only an illuminating special case.) Readers are expected to have some acquaintance with Lie groups, but appendices briefly review the prerequisite background. A PDF file of the book is available on the internet. This inexpensive printed edition is for readers who prefer a hardcopy.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Introduction to Arithmetic Groups (University Lecture) (University Lecture Series) (University Lecture Series, 73). To get started finding Introduction to Arithmetic Groups (University Lecture) (University Lecture Series) (University Lecture Series, 73), you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products represented.