Read Anywhere and on Any Device!

Special Offer | $0.00

Join Today And Start a 30-Day Free Trial and Get Exclusive Member Benefits to Access Millions Books for Free!

Read Anywhere and on Any Device!

  • Download on iOS
  • Download on Android
  • Download on iOS

Fraud Detection in White-Collar Crime

Rohan Ahmed
4.9/5 (12179 ratings)
Description:Bachelor Thesis from the year 2017 in the subject Computer Science - Commercial Information Technology, grade: 1.3, Heilbronn University, language: English, abstract: White-collar crime is and has always been an urgent issue for the society. In recent years, white-collar crime has increased dramatically by technological advances. The studies show that companies are affected annually by corruption, balance-sheet manipulation, embezzlement, criminal insolvency and other economic crimes. The companies are usually unable to identify the damage caused by fraudulent activities. To prevent fraud, companies have the opportunity to use intelligent IT approaches. The data analyst or the investigator can use the data which is stored digitally in today's world to detect fraud. In the age of Big Data, digital information is increasing enormously. Storage is cheap today and no longer a limited medium. The estimates assume that today up to 80 percent of all operational information is stored in the form of unstructured text documents. This bachelor thesis examines Data Mining and Text Mining as intelligent IT approaches for fraud detection in white-collar crime. Text Mining is related to Data Mining. For a differentiation, the source of the information and the structure is important. Text Mining is mainly concerned with weak- or unstructured data, while Data Mining often relies on structured sources. At the beginning of this bachelor thesis, an insight is first given on white-collar crime. For this purpose, the three essential tasks of a fraud management are discussed. Based on the fraud triangle of Cressey it is showed which conditions need to come together so that an offender commits a fraudulent act. Following, some well-known types of white-collar crime are considered in more detail. Text Mining approach was used to demonstrate how to extract potentially useful knowledge from unstructured text. For this purpose, two self-generated e-mails were converted into struc-tured fWe have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Fraud Detection in White-Collar Crime. To get started finding Fraud Detection in White-Collar Crime, you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
3668738343

Fraud Detection in White-Collar Crime

Rohan Ahmed
4.4/5 (1290744 ratings)
Description: Bachelor Thesis from the year 2017 in the subject Computer Science - Commercial Information Technology, grade: 1.3, Heilbronn University, language: English, abstract: White-collar crime is and has always been an urgent issue for the society. In recent years, white-collar crime has increased dramatically by technological advances. The studies show that companies are affected annually by corruption, balance-sheet manipulation, embezzlement, criminal insolvency and other economic crimes. The companies are usually unable to identify the damage caused by fraudulent activities. To prevent fraud, companies have the opportunity to use intelligent IT approaches. The data analyst or the investigator can use the data which is stored digitally in today's world to detect fraud. In the age of Big Data, digital information is increasing enormously. Storage is cheap today and no longer a limited medium. The estimates assume that today up to 80 percent of all operational information is stored in the form of unstructured text documents. This bachelor thesis examines Data Mining and Text Mining as intelligent IT approaches for fraud detection in white-collar crime. Text Mining is related to Data Mining. For a differentiation, the source of the information and the structure is important. Text Mining is mainly concerned with weak- or unstructured data, while Data Mining often relies on structured sources. At the beginning of this bachelor thesis, an insight is first given on white-collar crime. For this purpose, the three essential tasks of a fraud management are discussed. Based on the fraud triangle of Cressey it is showed which conditions need to come together so that an offender commits a fraudulent act. Following, some well-known types of white-collar crime are considered in more detail. Text Mining approach was used to demonstrate how to extract potentially useful knowledge from unstructured text. For this purpose, two self-generated e-mails were converted into struc-tured fWe have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Fraud Detection in White-Collar Crime. To get started finding Fraud Detection in White-Collar Crime, you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
3668738343
loader